§ 1 どこで最小・最大となるか?

MIN2=. 2. 1 1. 5 2. 9 3 3. 3 3. 7 4. 7 4. 2 4. 8 4. 9 3 2. 9 1. 1 1. 8		
MIN2=:MIN2, 2 3.7 5 3.3 0.5 0.9 0.5 _1.4 _0.4 2.3 3.9 8.4 7.2 6	3. 7	
MIN3=:6.7 4.6 5.2 4 5 6.7 13.4 9.1 6.6 4.6 7.7 6.1 4.6 9.2 6.2	2 4. 3	
MIN3=:MIN3, 3. 5 5. 6 6. 9 8 6. 3 8. 4 5. 4 4. 2 3 10. 4 8. 4 6. 3 12 10.	4 7.9	
MIN4=:8 11.1 10.5 10.7 13.3 12.6 10.9 10.3 12.9 12.6 10.5 8.8	9. 5 12 10. 6	
MIN4=:MIN4, 8. 9 9. 9 11. 2 11 12. 1 13. 5 14. 5 9. 9 9. 6 11. 1 11. 8 1	. 3 14. 1 13. 2 16. 1	
【東京地区の平成9年2月、3月、4月の最低気温のデータ】		
<./MIN2 <./MIN3 <./MIN4	│「<. /」は右引数の最 │ │小値を出力する。	
1.4 3 8	+31*+~ + 5.4 = *	
]MF2=: (]=<. /) MIN2	│右引数で与えたデ│ │一タの最小値に一│	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	致する"位置"に	
]MF3=: (]=<. /)MIN3	「1」を与え、他の位	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	置には「0」を与える。 	
0		
]MF4=: (]=<. /)MIN4		
100000000000000000000000000000000000000		
]MH2=: (=<. /) MIN2	│上の一連の結果と │ │同じである。	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
]MH3=: (=<. /)MIN3	「]=<./」はフォーク	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	「=<./」はフック	
0		
]MH4=: (=<. /) MIN4		
100000000000000000000000000000000000000		
MF2 -: MH2	┃「-∶」は左右が一致 ┃	
1 1	┃すれば「1」を返す。┃	
MF2 # 1+i. 28	│左引数で1に対応│ │する右引数の値	
22 25 1	9 る石 可数の値	
]MX2=: (=>. /) MIN2		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
]MX3=: (=>. /)MIN3		
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
0		
]MX4=: (=>, /) MIN4		

JAPLA シンポジウム 2006 チュートリアルセッション 2006/12/09

0000000000	0 0 0 0 0 0 0 0 0 0 0	00000000001	
MX2 # 1+i.28	MX3 # 1;i.31	MX4 # 1+i.30	2月の最低気温が 最大の日は26日
26	7	30	双八〇口16 20 口

§ 2 統計数値の切捨て・切上げ・四捨五入

]M=:2 14\$MIN2	
2.1 1.5 2.9 3 3.3 3.7 4.7 4.2 4.8 4.	9 3 2.9 1.1 1.8
2 3.7 5 3.3 0.5 0.9 0.5 _1.4 _0.4 2.	3 3.9 8.4 7.2 6.7
【東京地区の平成9年2月の最低気温のデー	タを2×14の形のテーブルにしてMに挿入】
<. M	>. M
2 1 2 3 3 3 4 4 4 4 3 2 1 1	3 2 3 3 4 4 5 5 5 5 3 3 2 2
2 3 5 3 0 0 0 _2 _1 2 3 8 7 6	2 4 5 4 1 1 1 _1 0 3 4 9 8 7
【Mのデータの小数点以下の値を切捨て】	【Mのデータの小数点以下の値を切上げ】
(<. @+&0. 5) M	Mのデータの小数点以下を四捨五入してい
2 2 3 3 3 4 5 4 5 5 3 3 1 2	る。
2 4 5 3 1 1 1 _1 0 2 4 8 7 7	
]C=:O": M	上の結果と同じに見えるが、書式演算子「":」
2 2 3 3 3 4 5 4 5 5 3 3 1 2	の結果は数値でなく"文字"である。
2 4 5 3 1 1 1 _1 0 2 4 8 7 7	
]D=:". O": M	「":」の逆演算である「".」という演算子によ
2 2 3 3 3 4 5 4 5 5 3 3 1 2	り"数値化"すれば、「(<.@+&0.5) M」の結
2 4 5 3 1 1 1 1 0 2 4 8 7 7	果と同じになる。
1+C 1+D	「1+C」は数値と文字の和であるから、
	3 "domain error"となる。「1+D」は数値同
error 3 5 6 4 2 2 2 0 1 3 5 9 8	8 士の和であるからエラーにならない。
1 +C	

+&0. 5 1. 4	(]+0.5″_) 1.4	「+」という演算子に定数「0.5」を「&」という
1. 9	1.9	接続詞で連結すると「0.5を加える」という 動詞になる。定数と動詞を逆順にしても
0. 5&+ 1. 4		「]+0.5″_」というフォークでも同じ結果
1. 9		
(<.@+&0.5) 1.4	(<. @+&0. 5) 1. 5	「(<.@+&0.5)」という関数は「小数点以下を
1	2	四捨五入する」という動詞になる。
5. 2": X=:1. 23456	3. 14159	書式関数「":」の左に "5.2" といった数値
1 00 0 14		を入力すると、5のスペースに小数点2桁で
1. 23 3. 14		四捨五入した数値を表示(結果は文字!)

JAPLA シンポジウム 2006 チュートリアルセッション 2006/12/09

7. 4": X	7のスペースに小数点4桁で四捨五入
1. 2346 3. 1416	

§ 3 データの分類と分類されたデータの平均と分散の計算

clsfy=:3 :' (0. $\overline{45+^{\circ}}$. u), :+/"1=u=./: $^{\circ}$ <. y.'

meanc=:([:+/*/)%+/@{: NB. 分類されたデータの平均を求める関

数

varc=:([:+/{:*[:*:{.-meanc)%+/@{: NB. 分類されたデータの分

散

MIN4=:10+(_20 11 5 7 33 26 9 3 29 26 5 _12 _5 20 6)%10			
MIN4=:MIN4, 10+(_11 _1 12 10 21 35 45 _1 _4 11 18 13 41 32 61)%10			
【東京地区の平成9年4月の最低気温のデー	-タ】		
]D=:10 {. MIN4	MIN4 から最初の 10 個 (1 日から 10 E		
	 まで)を取り出しDに挿入している。		
8 11.1 10.5 10.7 13.3 12.6 10.9 10.	3 12.9		
12. 6	D を大小順に並べ直したものを A I		
]A=:/:~D	挿入している。		
8 10.3 10.5 10.7 10.9 11.1 12.6 12.	6 12 9		
	0 12.0		
13. 3	A 0 ME I		
]B=:<. A	Aの数値の小数点以下を"切り落とし"て、		
8 10 10 10 10 11 12 12 13	整数値にしてBに挿入している。		
]F=:+/"1= B	同じ数値ごとの度数を与えている。「=」の		
1 4 1 3 1	側形は「~.=/]」のように演算する。		
] X=: 0. 45+~. B	「~.」は"重複要素を排除する"演算子で、		
8, 45 10, 45 11, 45 12, 45 13, 45	の重複要素を除き「0.45」を加えている。		
X, :F	X(分類されたクラスの代表値)にF(度数)る		
	下に付加したテーブルである。なお、10度台		
8. 45 10. 45 11. 45 12. 45 13. 45	のデータは9.95-10.94の範囲の計測値が記		
1 4 1 3 1	述されるので、中間点は"10.45"となる。		
]XF=:clsfy D			
8. 45 10. 45 11. 45 12. 45 13. 45	「clsfy」は、分類幅が " 1 " という特殊なち		
1 4 1 3 1	合の度数分布表を与える関数である。		
(+/X*F) %+/F meanc XF	mean D 分類されたデータ XF の平均とデ-		
11.05	タDから計算した平均は多少異なる		
11. 25 11. 25 11. 3			
(+/F**·A-W)%+/F Varc AF	1		
1.96 1.96 2.30	- メリから計昇しに分散は多少異なる 029 -		
(+/F**:X-M)%+/F varc XF 1.96 1.96 2.39]XF=:clsfy MIN4	var D 分類されたデータ XF の分散とデータ D から計算した分散は多少異なる 029 4 月の 30 日間の全データ MIN4 を分数 した結果の度数分布表である。		

8. 45 9. 45 10. 45 16. 45	11. 45 12. 45 13. 45 1	4. 45
3 4 6	6 5 3 2	1
meanc XF	varc XF	度数分布表からの平均と分散の計算結果で、
11 4167	3 63222	(Dから直接計算は11.4167;3.23)

§ 4 統計データの分類と集計(級間隔を任意に与えた場合)

acum=:[:+/"1[:=[:/:~<.@(%~)

number=:(1:~:*@<./@])+>.@((>./-<./)@]%[) NB. value の補助関

数

value=:([:(]-**0:=2:|])<.@<./)@]+[:+:[:i.number

table=:value, :acum [meanc=:+/@:*/%+/@:{:

NB. 左引数で指定した級間隔で右引数のデータを分類する関数

2 14 \$ D=:2 % M2 1, 05 0, 75 1, 45 1, 5 1, 65 1, 85 2, 35 2, 1 2, 4 2, 45 1, 5 1, 45 0, 55 0, 9 1 1.85 2.5 1.65 0.25 0.45 0.25 _0.7 _0.2 1.15 1.95 4.2 3.6 3.35 <u>[東京の平成9年2月の最低気温のデータM2を2で割ったDを2×14のテーブルで表示]</u> <. D Dを切捨てて整数値にし ている。 上の結果を「/:~」で大小]C=:/:~ <. D 順に並べている。]T=:=C 「=」という演算子の片側 形は「~.=/]」と同じ演算 を行う。「~.」は「重複要素 を排除する」という演算 子である。 +/"1 T 2 value M2 Tというテーブルを 1-セルについて加えて 「度数分布」と「級代表値」を与えている。 2 6 12 5 2 1 1 1 3 5 7 9

]D2=:2 table M2] D3	B=:2 table M3]D3=:2 tab	le M4	「table」という関数
_1 1 3 5 7 9		7 9 11 13	7 9 11 13 15	5	によって、2,3,4月の 気温の度数分布
(mean M2); meanc D2		 	;meanc D3	(me	an M4);meanc D4

3. 08929 3. 14286	6. 79677 7. 0645	2 11, 4167 9, 53333
]D5=: (1+{. D4), : {:D4	meanc D5	4月の気温に関しては、級代表値の与え
8 10 12 14 16 7 12 8 2 1	10. 5333	方にやや不適切さがあったために、元 データからの平均とずれが生じた。

§ 5 幹葉図: (片側形・両側形)のプログラム

```
sld_m=:3:0
integer=:[:+/[:*/'0'"_=[:":,.
decimal=:[:-[:{:[:>./([:#;._1'.'"_,":)"0
grid=:integer`decimal@.('.'"_ e.":)
digit=:(0:>._0.1"_*grid)":,. NB. digitize after listing
leaf=:_1:`([:-1:+grid)@. (grid>.0:) {"1[:digit/:~
drop=:_1:`(_2:)`(_1:-grid)@. (1:+[:*1:+grid)
stem0=:drop}."1 digit NB. stem part(not ordered)
stem=:[:stem0/:~ NB. ordered stem
add0=: (0:>. 1:+grid) $'0'"_
sld=:(~.@stem, "1 add0);=@stem#leaf
'program set of sld(monadic)'
   sld_d=:3 :0
stemb=:#@[({.;}.)[:stem0[:;[:/:~&.>;
stemd=:[:~.[:stem,
shaped=:([:<"1 stemd)=/L:1[:<"1 L:0 stemb)
leafd=:shaped#L:0[:leaf L:0;
sldd=:([:|."1@>@{.leafd);stemd;{:@leafd
'program set of sld(dyadic)'
```

MIN2=. 2. 1 1. 5 2. 9 3 3. 3 3. 7 4. 7 4. 2 4. 8 4. 9 3 2. 9 1. 1 1. 8

MIN2=:MIN2, 2 3.7 5 3.3 0.5 0.9 0.5 _1.4 _0.4 2.3 3.9 8.4 7.2 6.7

MIN3=: 6, 7, 4, 6, 5, 2, 4, 5, 6, 7, 13, 4, 9, 1, 6, 6, 4, 6, 7, 7, 6, 1, 4, 6, 9, 2, 6, 2, 4, 3

MIN3=:MIN3, 3.5 5.6 6.9 8 6.3 8.4 5.4 4.2 3 10.4 8.4 6.3 12 10.4 7.9

MIN4=:8 11.1 10.5 10.7 13.3 12.6 10.9 10.3 12.9 12.6 10.5 8.8 9.5 12 10.6

MIN4=:MIN4, 8.9 9.9 11.2 11 12.1 13.5 14.5 9.9 9.6 11.1 11.8 11.3 14.1 13.2

16. 1

【東京地区の平成9年2月、3月、4月の最低気温のデータ】

D=:10{.MIN4			│MIN4 のデータから最初の 10 個を
8 11.1 10.5 10.7	13 3 12 6 10	9 10 3 12 9	取り出しDに挿入している。
12. 6	12.0	10.0 12.0	 D を大小順に並べ直したもの。
]A=:/:~D			┃「/:~D」は「D/:D」と同じである。
8 10.3 10.5 10.7	10.9 11.1 12.	6 12.6 12.9	
13. 3			
digit A	stem A	leaf A	
8. 0	8	0357916693	
10. 3	10	(~.@stem, <i>"</i>	(1 add0)A (=@stem#leaf)A
10. 5	10	8	0
10. 7	10	10	3579
10. 9	10	11	1
11. 1	11	12	669
12. 6	12	13	3
12. 6	12	sld D	
12. 9	12	8 0	
13. 3	13	10 3579	
【データの文字化】	【幹を分離】	12 669	
		13 3	
sld MIN2	MIN2 slo	ld MIN3	MIN3 sldd MI

|--|

§ 6 2項係数とパスカルの三角形

| bic=:i.&>:!] NB. 2項係数を求める関数

| pascal=:":@bic"0@i.@>: NB. パスカルの三角形

i. &>: 4	右引数の値に「>:」で1を加えてから「i.」に
0 1 2 3 4	より整数値を生成している。
(0 1 2 3 4)!4 bic 4	4の場合の全ての2項係数を与えている。
1 4 6 4 1	(「i.&>:4)!4」のように演算するフォーク)
(<bic 3),="" 4<="" <bic="" td=""><td>3、4の場合2項係数を「<」という演算子によ</td></bic>	3、4の場合2項係数を「<」という演算子によ
1 3 3 1 4 6 4	り、ボックスで囲んで表示している。
(bic 3);bic 4	│ │「;」の両側形は左右をボックスで囲みなが
1 3 3 1 4 6 4	ら表示する。
1 1	
bic"0(3 4)	ランク0の要素(つまりアトム)ごとに実行。
1 3 3 1 0	ただ2つの結果の形を整えるために、3のと
1 4 6 4 1	きの結果の最後に「0」が付いてしまう。
":@bic"0(3 4)	│ │「″:」という演算子により文字化しながら2│
1 3 3 1	項係数を求めると、結果のないところには
1 4 6 4 1	「空白」が付くことで、0が表われない。
<pre></pre>	めでたく n=4 までのパスカルの三角形を求
	めボックスで囲みながら表示している。
	なおこの結果は文字列のテーブルであるか
	ら、演算に用いるときには「":」の逆演算で
1 4 6 4	ある「".」により数値化する必要がある。
1	
,.<"1 pascal 4	「〈"1」によりランク 1 の要素(リスト)に関
1	してボックスをかけて(「, . 」によってテーーブル化して)みると、空欄が同じ長さだ
1 1	けついていることが確かめられる。
1 2 1	
1 3 3 1	
1 4 6 4	

§ 7 2項分布

binom=:4 :'(k!x.)*(y.^k)*(1-y.)^|.k=.i.>:x.'

NB. 2項分布の確率関数を与える両側形の関数

bden=:bic@[*(]^i.@>:@[)*-.@]^[:|.i.@>:@[[bic=:i.&>:!]

NB. 2項分布の確率関数の関数型関数(Tacit Definition)

]K=. i.>:4	0から始まる4に1を加えた5個の連続し
0 1 2 3 4	た整数値を変数Kに挿入している。
. K	「 .」は右引数の数列を"逆順にする演算子
4 3 2 1 0	である。
(1-0. 6) ^ . K	(1-0.6) の4乗,3乗,2乗,1乗,0乗の値を
0. 0256 0. 064 0. 16 0. 4 1	求めている。
] A=: (0. 6) ^ . K	上と同じ結果で、Aに挿入して表示している。
0. 0256 0. 064 0. 16 0. 4 1	「 y」は"1-y"と同じである。
]B=:0.6 [^] K	0.6の0乗、1乗、2乗、3乗、4乗の値を求めて
1 0.6 0.36 0.216 0.1296	いる。
]C=:K!4	nが4の場合の2項係数を与えている。
1 4 6 4 1	
A*B*C	上の3種類の演算結果を要素ごとに掛けて
0, 0256 0, 1536 0, 3456 0, 3456 0, 1296	いる。
4 binom 0.6	上の結果と一致。つまり2項分布の確率関
0. 0256 0. 1536 0. 3456 0. 3456 0. 1296	数の明示型定義(Explicit Definition)。
4 bden 0.6	関数型定義(Tacit Definition)でも同じ結
0. 0256 0. 1536 0. 3456 0. 3456 0. 1296	果が得られる。
+/ 4 binom 0.6 +/ 4 bden 0.6	確率関数であるから、合計は当然1である。
4 binom"0(0.6 0.5)	右引数にPの値を複数個挿入することも可
0. 0256 0. 1536 0. 3456 0. 3456 0. 1296	能である。但しその場合には、0のランクを
	指定することが必要である。
0. 0625	
4 bden"0 (0. 6 0. 7)	
0. 0256 0. 1536 0. 3456 0. 3456 0. 1296	
0. 0081 0. 0756 0. 2646 0. 4116 0. 2401	

§ 8 (標準)正規分布

nden=:([:^-@-:@*:)%(%:@o. 2)"_ NB. 標準正規分布の確率密度関数

ndf0=:3 :'+/d*-:(}:+}.)nden, (i.1001)*d=. y. %1000'

ndf=:0.5" _+ndf0 NB. ndfs=:[:-/[:ndf"0|. NB. 分布関数

ndfs=:[:-/[:ndf0"0|. NB. 右引数で与えた区間での積分値を与える。

]D=:%:o. 2	$\sqrt{2\pi}$ の値を与えている。「%:」は平方根、「o.」
2. 50663	は円周率 π を与える演算子。
]A=:-@-:@*: 0 0.5 1 2	「0, 0. 5, 1, 2」の2乗の半分の値の符号を変え
0 _0. 125 _0. 5 _2	た値。「*:」は平方値、「-:」は半分にする演算 子「e ⁻⁰ ,e ^{-0.125} .,e ^{-0.5} .,e ⁻¹ .」の値を与えている。
]B=:^A	┃ ┃ 「^」は指数の値を出力する演算子。
1 0.882497 0.606531 0.135335	
B % D	上の値を D= $\sqrt{2\pi}$ で割った値を与えている。
0. 398942 0. 352065 0. 241971 0. 053991	
nden 0 0.5 1 2	標準正規分布の確率密度関数の「0,0.5,1,2」
0. 398942 0. 352065 0. 241971 0. 053991	での値を示している。

ndf0"0(0.5 1 1.65 1.96)	標準正規分布の確率密度関数の(0, x)の範
0. 191462 0. 341345 0. 450528 0. 475002	囲での積分(x は右引数で入力)。
ndf0"0 (_1 _0.5)	マイナスの値を入力すると、値も負になる。
_0. 341345 _0. 191462	
ndf"0(_1 _0.5 1.65 1.96)	標準正規分布の分布関数の値を出力する。
0. 158655 0. 308538 0. 950528 0. 975002	
(ndf0 1)+ndf0 0.5	(_0.5,1)の範囲での積分
0. 532807	
ndfs _0.5 1	分布関数「ndfs」という関数を用いても積分
0. 532807	の値が求められる。
(ndf0 1)-ndf0 0.5	(0.5,1)の範囲での積分
0. 149882	
ndfs 0.5 1	分布関数「ndfs」を用いた場合には、右引数
0. 149882	に区間の数値を入力すればよい。
ndfs _1 _0.5	(_1, _0.5)の範囲での積分

JAPLA シンポジウム 2006 チュートリアルセッション 2006/12/09

0. 149882	0. 149882	│ │(0.5.1)と入力すれば負の値を出力する。│

§ 10 標本比率の区間推定

width=:([:%:([+>:@[*-~)%])%]+4: NB. 標本比率の標準誤差を与える(両側関数)

| ratio=:(([+2:)%]+4:)-+:@(,-)@width NB. 比率に対する信頼度95%の信頼区間

275 -~ 400 125	右引数の値から左引数の値を引いている。 「~」は左右の引数を反対にする副詞である
275 ([+>:@[*-~) 400	「x([+>:@[* - ~]y」は「x+(>:x)*(y-x))」とい う値を求めている。
275([:%:([+>:@[*-~)%]+4:)400 9. 27775	前の結果を右引数の値で割ってから平方根をとっている。
275(([:%:([+>:@[*-~)%])%]+4:)400 0.0230793	前の結果を右引数の値に4を加えた値で割 算し、標本比率の標準誤差を求めている。
]W=:275 width 400	標本比率に対する標準誤差が与えられ、結 果をWという変数に挿入して表示する。
(, -) W 0. 0230793 _0. 0230793	「(, -)w」はフックで、「W,-W」という結果と 同じである
275 +:@(,-)@width 400	「width」に「+:@(, -)」を接続した結果で、前
0.0461586 _0.0461586 275 (([+2:)%]+4:) 400 0.685644	<u>の結果の2倍の値が与えられる。</u> 左引数に2を加えた値([+2:]を右引数に4 を加えた値(]+4:)で割算している。
275 ((([+2:)%]+4:)-+:@(, -)@width) 400	直上の値からその前の値を引いている。
0. 639485 0. 731802	
275 ratio 400	前の結果と同じで、「ratio」の演算結果は、
0. 639485 0. 731802	比率に対する信頼度 95%の信頼区間を与え
	る。この関数の左引数にはある属性をもつ
	サンプル数、右引数には観測数を入力する

··········「J」言語メモ ··············

上で用いた「4:」や「2:」などの動詞は、常に同じ定数を取り出すという関数で、_9から9までの整数値にコロン(:)をつけて定義され、結構、重宝な「動詞」である。さらに、他の任意の定数を"動詞化"するには、「10"_」、「(o. 2)"_」といったように、右に("_)をつけてやればよい。<u>また「&」という接続詞を用いて以下のようにしてもよい。</u>

275 (2&+@[, 4&+@]) 400 275 (([+2:),]+4:) 400

277 404	277 404

§ 11 (正規分布の)平均の推定

mean_sd=:[:%:([:mean*:@(-mean)) # NB. 標本平均の標準誤差を与える関数

mean_est=:mean@]([;[-+:@(,-)@])mean_sd@] NB. 平均の点推定と区間推定を与える。

nrnd0=:3:'_6+(+/?(12, y.)\$1000)%1000' NB. 標準正規分布の乱数を発生

nrand=:[:([:".0:":])5:+2:*nrnd0 NB. ほぼ0-10の範囲の整数型正規乱数を発生

] D=. nrand 10 6 5 4 5 9 6 6 4 3 6	「nrand」という関数は、平均が5で分散が4の(離散型)正規乱数を生成する。
]M=: (mean=:+/%#)D	Dというデータの平均を求めMに挿入している。
(-mean) D 0. 6 _0. 4 _1. 4 _0. 4 3. 6 0. 6 0. 6 _1. 4 _	Dというデータの平均からの偏差を求めている。 _2.4
0.6 ([:mean*:@(-mean))D	上の値の平方値の平均で、つまり「分散」を 求めている。
([:%:([:mean*:@(-mean))%#)D	上で求めた分散の値をデータの個数で割ってから平方根をとっている。
]S=:mean_sd D	標準偏差をデータ数の平方根で割った値で、
0. 493964 +:@(, -) S 0. 987927 0. 987927	<u>いわゆる「標準誤差」に他ならない。</u> 「(,-)S=S,-S」はフックで、「+:」という演算 子で2倍の結果が得られる。
M([; [-+:@(, -)@]) S 5. 4 4. 41207 6. 38793 mean_est D 5. 4 4. 41207 6. 38793	ボックスの左側に平均値 M、右側には M - 2S と M+2S の値(信頼区間)が与えられている。 「;」という演算子は、「左右の値をボックス で囲みながら連結する」という動詞である。

mean_est nrand 10	乱数の値がその都度異なるから、結果は実
4.7 3.40231 5.99769 mean_est	験の都度変化する。
nrand 10	「nrand」は平均の整数乱数を発生させ、信頼
5. 3 4. 0655 6. 5345 mean_est nrand	区間はいずれも5をカバーしている。
50	サンプル数が多くなると、信頼区間の幅は
4. 9 4. 27199 5. 52801	狭くなる。

§ 12 相関係数に対する区間推定

sdev=:[:%:[:mean*:@dev=:-mean=:+/# NB. 偏差と標準偏差を与える関数
cor=:[:mean[:*/(dev%sdev)&> NB. 左引数と右引数で与えたデータの相関係数
corest_d=:4:'(<:%>:)^(^.(>:%-.)y.)-(,-)4%:x.-3' NB. 相関係数の信頼区
間

| corest_m=:([:{.#&>)corest_d cor NB. 右引数にボックス形で与える片側関数

(, -)%: 100-3	「n-3=97」の平方根とその反対符号を与えて
(,)/0. 100 0	
9. 84886 9. 84886	いる。「(, -) y=y, -y」はフックである。
$]W=:4\overline{\%}(, -)\%: 97$	4を上の値で割ったものを₩に挿入してい
	る。つまり推定幅を与えている。
0. 406138 _0. 406138	000000000000000000000000000000000000000
(>:%) 0. 5	「」は補数(つまり1-y)を与える演算子で、
	(1+y)/(1 - y)という値を与える。
3	
] Q=: ^. @ (>: %) 0. 5	上の値の自然対数をQに挿入する。つまり、
	フィッシャー変換を行なっている。
1. 09861	
]S=:Q - W	Qの値に推定幅をマイナス・プラスして、変
	数 S に挿入する。
0. 692474 1. 50475	
(<:@^%>:@^) S	「 $((e^s-1)\%(e^s+1))$ 」という値を求めている。
0. 333034 0. 636564	
100 cor_est 0.5	上記の一連の演算を行なっている。つまり、
_	標本数を左引数に標本相関係数を右引数に
0. 333034 0. 636564	入力すると、相関係数に対する信頼度 95%
	の信頼区間を出力している。
	一の信頼を囲き出力している。

SM=:9820 13836 11506 8330 8761 117	44 12769 15356 12316 13540 NB. 男子自殺者数
SW=:6491 8641 8637 6114 6967 8231	7773 8027 7772 6976 NB. 女子自殺者数
RUE=: 1, 2 2, 5 1, 7 1, 2 1, 1 1, 9 2, 0 2	.62.12.5 NB. 完全失業率(%)
cor SM ; RUE	男子自殺者数と完全失業率の相関係数を求めてい
0. 968921	వ .
10 corest_d cor SM ; RUE	(男子自殺者数と完全失業率の)相関係数に対する
0. 866391 0. 993063	信頼区間を出力する両側形の関数。
corest_m SM;RUE	(男子自殺者数と完全失業率の)相関係数に対する
0. 866391 0. 993063	信頼区間を出力する片側形の関数。
corest_m SW ; RUE	女子自殺者数と完全失業率の信頼区間では、結果

	が0を含んでいるので無相関の可能性すらある。
0. 0642458 0. 895202	

§ 13 観測比率の差に関する検定

ratio_dif=:3 :' (-/%/&>y.)%%: (+/%{:&>y.)*(*-.)%/+/>y.'

NB. ボックス形で与えた2組の観測比率の差に関する検定統計量 ratio_t=:([:-/%/&>)%[:%:+/@([:%{:&>)*(*-.)@([:%/+/@:>)

]RD=:69 300 ; 81	300	ボックスで囲まれたデータをRDという変数
69 300 81 300 # RD		に入力している。
2		RD のアイテム数は 2 で、ボックスで囲まれ
		た1つ1つが1個の要素とみなされる。
>RD	; RD	「〈、」という演算子により、ボックスを開く
69 300	69 300 81 300	と、テーブルの形の変数になる。「;」で開く と、リストになる。
81 300	0/ / · /> DD	
+/>RD	%/+/>RD	2 組のデータを合わせたときの比率を与え
150 600	0. 25	ている。
]V=: (*) 0.25		「0.25*(1-0.25)」と計算を行なうフックで、
		差がないとしたときの分散の推定値
0. 1875 {:&> RD]R=:+/%{:&> RD	ボックスごとに末尾の要素を取り出す。
\(\alpha \rangle \text{ND}		ホックスことに木尾の安糸を取り出り。
300 300	0. 00666667	上の結果の逆数を求めてから足している。
%:R * V		上の結果に分散を掛けてから平方根をとっ
0. 0353553		たもので、「標準誤差」を与えている。
] S=:%: (+/%{:&>RD))*(*-)%/+/>PD	│ │標準誤差を求めて、Sという変数に挿入して
J J J - : // // // [· W / N]	/ * (* .) /0/ 1/ / ND	15年最左を不動で、3000・7変数に挿入して
0. 0353553		
-/%/&> RD		ボックスごと求めた比率の差を求めている。
_0. 04		上の値を標準誤差のSで割った値で、差がな
(-/%/&> RD)%S		いという帰無仮説の下では t 一分布。
_1. 13137		
ratio_dif RD	ratio_t RD	上記の一連の演算を行なっている。つまり、
1 12127	1 10107	比率の差の検定統計量を与えている。
L_1. 13137	l _1. 13137	

]SD=:456 1200 ; 504 1200		4 1200	内閣の支持率調査の2回の結果(架空のデータ)から「人気は盛り返したか?」
	456 1200	504 1200		7/10 5 7(X(10 mm / 22 6 / 210 · · ·]
Ĺ	ratio_dif SD		Ratio_t SD	「支持率に変化なし」とする"帰無仮説"は

		棄却される。
2	2	

§ 14 平均の差に関する検定

ssdev=:[:+/*:@(-mean=:+/%#) NB. 偏差平方和を与える関数。

mean_dif=:3 :' (-/mean&>y.)%%: (+/ssdev&>y.)*(+/%*/*+/-2:)#&>y.'
meandif=:-/@: (mean&>)%[:%: (+/%*/*+/-2:)@: (#&>)*[:+/ssdev&>

M1=:11 13 12 9 2 2 1	100100	M1 は水戸泉(幕内力士)の平成3·4年の12	
M2=:10 7 14 5 1 11 1	11 6 14 13 11	場所の番付位置のデータ(0は三役)	
		WO . I T - 1 5 6 18 40 18 - 7 - 7 . I . I . II	
M2=:M2, 14 13 15 7 13	3 9 2	M2 は平成 5 年以降 18 場所の番付位置	
M1 #&>@; M2		│M1, M2という2組のデータ数を同時に算出│ │している。	
12 18			
(*/*+/-2:) 12 18		「(*/12 18)*(+/-2:)12 18=216*(30-2)」の	
6048		値である。	
(+/%*/*+/-2:)12	18	右引数の総和を上の演算結果の 6048 で割っ	
0. 00496032		た結果が与えられる。	
]C=:M1([:(+/%*/*-	+/-2:)#&>@;) M 2	上の一連の結果をCという変数に挿入して	
0. 00496032		いる。	
M1 mean&>@;M2	M1 ssdev&>@; M2	M1, M2という2組のデータの平均と「偏差 平方和」を同時に算出している。	
4, 25 9, 77778	308, 25 307, 111	一十万和」を同時に昇出している。	
]S=:%:C*+/(M1 ssc	dev&>@; M2)	2組の分散を加えて Cを掛け平方根をとっ	
		た値をSに挿入。これは、平均に差が無いと	
1. 74711		いう仮説の場合の「標準誤差」を出力。	
(M1-/@(mean&>@;) N	1 (2) %S	│ │平均の差の値を標準誤差で割った値で、帰	
3. 16396		│ │無仮説のもとではt一分布に従う。	
M1 mean_dif M2		上記の一連の演算を行なっていて、平均の	
		差に関する t ー統計量の値を与えている。	
_3. 16396		210/ 0 : WHI = 1/10 C J / C C V 00	
meandif M1;M2		水戸泉の平成3・4年の12場所の番付位置と	
_3. 16396		平成5年以降の位置とは有意に異なってい	
【関数型定義でも同じ	.結果が得られる】	る(番付の下位のほうで低迷している!)。	

mean_dif MIN2;MIN3	meandif MIN2;MIN3	東京地区の平成9年2月と3月の最
_5. 97993	_5. 97993	低気温の間には明らかな違いがある。 また3月と4月とではさらなる顕著
mean_dif MIN3;MIN4	meandif MIN3;MIN4	な違いがある。
_8. 21659	_8. 21659	
mean_dif MIN2;MIN4	meandif MIN2;MIN4	2月と4月の間では、「差がない」とす
15 5776	15 5776	る仮説は検定するまでもない!

§ 15 一様性の検定

chi_test=:([:+/*:@(-mean))%mean NB. 一様性検定のためのカイ2乗統計量

DICE	サイコロ投げの60回の実験結果で、1から6
10 14 10 9 10 7	の目までの出現回数を示している。
DICEB	6の目の出る確率を 2/7 にしたサイコロの
5 14 8 5 8 20	実験結果を示している。
(-mean) DICE	10という平均からの偏差を求めている。
0 4 0 _1 0 _3	
*:@(-mean)DICE	平均からの偏差の平方値を与えている。
0 16 0 1 0 9	
([:+/*:@(-mean))DICE	上の結果の総和で、偏差平方和を与えてい
26	る。
(([:+/*:@(-mean))%mean)DICE	偏差平方和を平均値で割った値が与えられ
2. 6	る。
chi_test DICE	上記の一連の演算を行なっていて、いわゆ
2. 6	る「カイ2乗統計量」の値を示している。
chi_test DICEB	偏ったサイコロの場合には、カイ2乗統計
17. 4	量が大きな値をとり、一様性の仮説が棄却
	される(自由度5のカイ2乗分布の5%点は
	11.07である)〕。
H=:28 25 22 24 19 16 14 12(架空のデー	160 レースの枠ごとの優勝回数のデータ。
タ)	自由度7のカイ2乗分布の5%点は14.067
chi_test H	であるから、一様性の仮定は棄却できない。
11. 3	<u>(一見外枠のほうが回数が少ない感じ!)</u>

上で用いた DICE や DICEB といったデータは、次のような関数を利用して得た結果である dice=:1:+2@(\$6:) NB 等確率のサイコロ投げの実験結果

dice=:l:+?@(\$6:) NB. 等確率のサイ	「コロ投けの実験結果 	
diceb=:6:<、1:+?@(\$7:) NB. 偏ったサイコロ投げの実験結果		
]D=:+/"1 (>:i.6)=/ dice 60]DB=:+/"1 (>:i.6)=/ diceb 60	
8 11 7 16 10 8	10 8 5 5 11 21	
chi_test D	chi_test DB	
5. 4	17. 6	

§ 16 適合度検定

gf_test=:[:+/([:*:]-(*+/))%(*+/)

NB. 左引数で与えた理論分布との適合性のためのカイ2乗統計量

]E=:0.5 0.5(*+/)480 420	左引数の理論比率を観測値の総数に掛けた
450 450	理論度数を E という変数に挿入し表示して
0. 5 0. 5 * +/480 420	いる。「x (*+/) y 」 は 「x* (+/y) 」 のように演算 を行なう"両側フック"である。
450 450	
0. 5 0. 5(]-(*+/)) 480 420	 右引数から直上の値を引いて、理論値から
30 _30	の偏差を与えている。
(0.5 0.5([:*:]-(*+/))480 420)%E	・・・・・・・・・・・ 上の結果の平方値(偏差平方値)を理論度数
2 2	Eの値で割っている。
0.5 0.5(([:*:]-(*+/))%(*+/))480 420	
2 2	
0.5 0.5([:+/([:*:]-(*+/))%(*+/))4	
420	度数で割った値である。
4	
0.5 0.5 gf_test 480 420	上の一連の演算結果と同じで、左引数で与
4	│えた理論分布との適合性を示すカイ2乗統 │ │ 計量を与えている
(6\$%6)gf_test D=: 8 11 7 16 10 8	計量を与えている。 サイコロ投げの60回の実験結果で、1から6
(04/10/81_0000 2 / 0 / 1 / 10 / 0	の目までの出現回数を示している。
5. 4	 6の目の出る確率を 2/7 にしたサイコロの
(6\$%6)gf_test DB=: 5 14 8 5 8 20	実験結果の検定統計量の値を示している。
17. 4	DICEBというデータを得たのと同じ確率を
((5\$%7),2%7)gf_test DB	与えてやると、統計量の値は小さくなる。
6. 96667	772 C G C C 19641 = 27 12 13 1 C C C G G G

カイ2乗統計量の大小を判定するための上側5%点は、自由度によって異なる。自由度が1から10までの上側5%点は、次のように与えられている:

3.841 5.991 7.815 9.488 11.070 12.590 14.070 15.510 16.920 18.312 特に口で囲ってある値が自由度5の場合の値である。正しいサイコロ投げの実験結果のDに対しては"一様性の仮定"が棄却できないが、偏ったサイコロ投げの実験結果のDBに対

しては一様でないことは明らかである(99%点の15.086よりも大きい)。

§ 17 傾向性の検定

trend=:4 :' (+/y.**:p-q)%(*-.)q=.mean p=.x.%y.'

NB. 左引数の右引数に対する比率の傾向性(一様か否か)を調べる検定統計量

X=:>:i.5 [Y=:4 8 6 8 10	XとYに値を挿入する。
]P=:X % Y	「X÷Y」の値をPに挿入し結果を表示してい
	る。
0. 25 0. 25 0. 5 0. 5 0. 5	
]Q=:mean P	Pの平均値をQに挿入し結果を表示してい
0. 4	る。
+/Y**:P-Q	$Y imes (P ext{-}Q)^2$ の総和を与えている。
0. 51	- **(**********************************
(+/Y**:P-Q)%(*)Q	上の値を「Q(1-Q)=0.24」という値で割って
2. 125	いる。
X trend Y	比率には傾向性がないという仮説の下での
2. 125	カイ2乗統計量を与えている。
H=:150 250 264 302 238 176 36	Hは不眠症を訴えた人の数。
	年齢階級別成人女子の不眠症数
N=:534 746 784 705 443 299 70	Nは年齢階級ごとの調査人数。
H trend N	傾向性がないという仮説の下でのカイ2乗
158. 702	値がかなり大きく、年齢と共に不眠症の比
	率が高くなるという傾向がある。

 \cdots 「統計学」メモ \cdots 観測比率 P_i = x_i $/ n_i (i=1,2,\cdots,k)$ に傾向性がないとする仮説の下でのカイ2乗値は

$$CHIO(k) = \sum_{i=1}^{k} n_i \frac{(P_i - p_{0i})^2}{p_{0i}(1 - p_{0i})} = \sum_{i=1}^{k} \frac{(x_i - n_i p_{0i})^2}{n_i p_{0i}(1 - p_{0i})}$$

と表され、これが近似的に自由度 k のカイ2乗分布に従う変量である。 ところでこの値は、理論比率 $^{P_{0i}}$ が分からないと計算できないので、その値を

$$\overline{P} = \left\{ P_1 + P_2 + \cdots + P_k \right\} / k$$
 という値で代用することにすると

$$CHI(k) = \sum_{i=1}^{k} \frac{n_i (P_i - \overline{P})^{2_i}}{\overline{P}(1 - \overline{P})}$$

も、自由度 $^{(k-1)}$ のカイ2乗分布で近似できることになる。

§ 18 分割表の独立性の検定

cont_test=:+/@, @(*:@-%])+/"1*/+/%+/@,

NB. 右引数で与えた分割表の独立性の仮定の下でのカイ2乗統計量

]C=:2 2\$45 15 25 15	2×2の分割表のデータを変数 C に挿入して 表示している。
45 15	
25 15	
(+/%+/@,)C	Cのアイテムについての総和をデータの合
0. 7 0. 3	計 100 で割っている。
+/″1 C	Cの1セルであるリスト(横方向)について
60 40	の総和を与えている。
]P=: (+/"1*/+/@,)C	「0.7 0.3」「60 40」との外積(掛け算に関す
42 18	るクロス表)をPに挿入する。
28 12	
C (*:@-%]) P	「(C-P)の平方」をPで割ったテーブルを与え
0. 214286 0. 5	ている。
0. 321429 0. 75	
+/, C(*:@-%])P	上で求めた値の総和を与えている。つまり「
1. 78571	$\sum \left(c_{ij}$ - $p_{ij} ight)^2/p_{ij}$ 」の値である。
cont_test C	独立性の仮説の下でのカイ2乗統計量を与
1. 78571	える。

, C	· O J Am / L	「,」という演算子の片側形は右引数の要素を「リスト化」する。
45 15 25 15 , . 45 15	,. i.2 2 2	「, 」の片側形は全ての要素を「テーブル
45	0 1 2 3	化」する。
\$, : i. 2	4 5 6 7	「, : 」の片側形は,見かけは変わらないが
1 2		ランクを1つ上げたアレイを生成する。
\$.: i.2 2		

JAPLA シンポジウム 2006 チュートリアルセッション 2006/12/09

1	1
1 2 2	

§ 19 分割表モデルの最尤推定

MLED= MLED=:%+/@,: NB. 分割表の従属モデルのパラメータの最尤推定

MLEI=: (+/"1*/+/)@(%+/@,) NB. 左引数に理論比率を与えたときのモデルの AIC

]C=:2 2\$45 15 25 15	2×2の分割表のデータを変数 C に挿入して
45 15	表示している。
25 15	
] B=: (%+/@,) C	Cの各要素を要素の総数 100 で割った値を
0. 45 0. 15	示している。
0. 25 0. 15	
MLED C	上と同じ結果で、従属モデルのパラメータ の最尤推定値を与える。
0. 45 0. 15	の取尤推定値を子える。
0. 25 0. 15	
]E=:+/"1 B	Bの1-セル(横方向)に対する合計値を求めてEに挿入。
0.6 0.4	CLICITY
]F=:+/ B	Bのアイテム(縦方向)に対する合計値を求
0.7 0.3	めてEに挿入。
(+/"1*/+/)B	「E=:+/ " B=0.60 0.4」と「F=:+/B=0.7
0. 42 0. 18	0.3」の外積を作成している。
0. 28 0. 12	
MLEI C	上と同じ結果で、独立モデルのパラメータ の推定値を与える。
0. 42 0. 18	♥ 近ん № と すん ♡。
0. 28 0. 12	

	<u> 紐計字 メモ</u>			
pq	p(1-q)	p		
(1-p)q	(1-p)(1-q)	1- p		
q	1- <i>q</i>	1		

【独立モデル】

$p_{_{11}}$	$p_{_{12}}$	p
$p_{_{21}}$	p_{22}	1- p
p	1- <i>q</i>	1

【従属モデル】

従属モデルの場合の最大対数尤度は

 $MLLD = a \log(a/n) + b \log(b/n) + c \log(c/n) + d \log(d/n)$ (n = a + b + c + d)

さらに独立モデルの場合の最大対数尤度も、

$$MLLI = a \log PQ + b \log P(1 - Q) + c \log(1 - P) + d \log(1 - P)(1 - Q)$$

 $(P = (a + b)/n, Q = (a + c)/n; n = a + b + c + d)$

のように与えられる。

§ 20 分割表モデルの最大対数尤度と情報量規準

MLLI=:[:+/[:,]*^.@MLEI NB. 2×2分割表の独立モデル最大対数尤度

MLLD=:[:+/[:,]*^.@MLED NB. 2×2分割表の従属モデル最大対数尤度

AICI=:3:'+:(+/<:\$ y.)-MLLI y.' NB.分割表の独立モデルの情報量規準(AIC)

| AICD=:3:'+:(<:+/\$ y.)-MLLD y.' NB.分割表の従属モデルの情報量規準(AIC)

]A=:MLEI C	独立モデルのパラメータの推定値を示して
0. 42 0. 18	いる。
0. 28 0. 12	
+/, C*^. A	│ │上のAという値の対数にCを掛けた結果の│
128, 388	
_120.300	各要素の合計である。
]A1=: (MLLI=:[:+/[:,]*^.@MLEI)C	上と同じ結果で、独立モデルの下での最大
_128. 388	対数尤度を与えている。
+/<:\$ C	Cの各ランクから1を引いた値の合計で、独
2	立モデルのパラメータ数を与えている。
+: (+/<:\$ C) -A1	│ │パラメータ数から最大対数尤度を引いた値 │
260. 775	を2倍していて、AICの値である。
AICI C	上の結果と同じで、分割表の独立モデルの
260, 775	 下での情報量規準を与えている
]B=:MLED C	従属モデルのパラメータの推定値を示して
0. 45 0. 15	いる。
0. 25 0. 15	
+/, C*^. B	上のBという値の対数にCを掛けた結果の
_127. 504	各要素の合計である。
]B1=: (MLLD=: [:+/[:,]*^. @MLED) C	上と同じ結果で、従属モデルの下での最大
127. 504	対数尤度を与えている。
<:*/\$ C	Cの要素の数から1を引いた従属モデルの
3	パラメータ数を与えている。
+: (<:+/\$ C)-B1	パラメータ数から最大対数尤度を引いた値
261, 008	を2倍していて、AICの値である。

JAPLA シンポジウム 2006 チュートリアルセッション 2006/12/09

AICD C	上と同じ結果で、分割表の従属モデルの下
261, 008	 での情報量規準を与えている。